Handling Data Scarcity Through Data Augmentation in Training of Deep Neural Networks for 3D Data Processing
نویسندگان
چکیده
Due to the availability of cheap 3D sensors such as Kinect and LiDAR, use data in various domains manufacturing, healthcare, retail achieve operational safety, improved outcomes, enhanced customer experience has gained momentum recent years. In many these domains, object recognition is being performed using against difficulties posed by illumination, pose variation, scaling, etc present 2D data. this work, we propose three augmentation techniques for point cloud representation that sub-sampling. We then verify samples created through carry same information comparing Iterative Closest Point Registration Error within sub-samples, between sub-samples their parent sample, with different parents subject, finally, subjects. also augmented have characteristics features those original applying Central Limit Theorem.
منابع مشابه
metrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)
هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...
pattern recognition in maintenance data using methodologies data minitng (cade study isfahan regional power electric company)
فعالیت های نگهداری و تعمیرات اطلاعاتی را تولید می کند که می تواند در تعیین زمان های بیکاری و ارایه یک برنامه زمان بندی شده یا تعیین هشدارهای خرابی به پرسنل نگهداری و تعمیرات کمک کند. وقتی که مقدار داده های تولید شده زیاد باشند، فهم بین متغیرها بسیار مشکل می شوند. این پایان نامه به کاربردی از داده کاوی برای کاوش پایگاه های داده چندبعدی در حوزه نگهداری و تعمیرات، برای پیدا کردن خرابی هایی که موجب...
15 صفحه اول3D Inversion of Magnetic Data through Wavelet based Regularization Method
This study deals with the 3D recovering of magnetic susceptibility model by incorporating the sparsity-based constraints in the inversion algorithm. For this purpose, the area under prospect was divided into a large number of rectangular prisms in a mesh with unknown susceptibilities. Tikhonov cost functions with two sparsity functions were used to recover the smooth parts as well as the sharp ...
متن کاملApplication of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data
This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values. Seismic surveying was performed next on these models. F...
متن کاملTraining Deep Fourier Neural Networks to Fit Time-Series Data
We present a method for training a deep neural network containing sinusoidal activation functions to fit to time-series data. Weights are initialized using a fast Fourier transform, then trained with regularization to improve generalization. A simple dynamic parameter tuning method is employed to adjust both the learning rate and regularization term, such that stability and efficient training a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal on Semantic Web and Information Systems
سال: 2022
ISSN: ['1552-6291', '1552-6283']
DOI: https://doi.org/10.4018/ijswis.297038